Transfer Learning

In this notebook, I demonstrate how to use pre-trained networks to solved challenging problems in computer vision. Specifically, I use networks trained on ImageNet that are available from torchvision.

ImageNet is a massive dataset with over 1 million labeled images in 1000 categories. It’s used to train deep neural networks using an architecture called convolutional layers. For details on convolutional networks watch this.

Once trained, these models work astonishingly well as feature detectors for images they weren’t trained on. Using a pre-trained network on images not in the training set is called transfer learning. Here we’ll use transfer learning to train a network that can classify our cat and dog photos with near perfect accuracy.

With torchvision.models you can download these pre-trained networks and use them in your applications. We’ll include models in our imports now.

%matplotlib inline

import matplotlib.pyplot as plt

import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torchvision import datasets, transforms, models

Most of the pretrained models require the input to be 224x224 images. Also, we’ll need to match the normalization used when the models were trained. Each color channel was normalized separately, the means are [0.485, 0.456, 0.406] and the standard deviations are [0.229, 0.224, 0.225].

data_dir = 'loading-image-data-into-pytorch/Cat_Dog_data'

train_transforms = transforms.Compose([transforms.RandomRotation(30),
                                       transforms.RandomResizedCrop(224),
                                       transforms.RandomHorizontalFlip(),
                                       transforms.ToTensor(),
                                       transforms.Normalize([0.485, 0.456, 0.406], 
                                                            [0.229, 0.224, 0.225])])

test_transforms = transforms.Compose([transforms.Resize(255),
                                      transforms.CenterCrop(224),
                                      transforms.ToTensor(),
                                      transforms.Normalize([0.485, 0.456, 0.406],
                                                           [0.229, 0.224, 0.225])])

# Pass transforms in here, then run the next cell to see how the transforms look
train_data = datasets.ImageFolder(data_dir + '/train', transform=train_transforms)
test_data = datasets.ImageFolder(data_dir + '/test', transform=test_transforms)

trainloader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)
testloader = torch.utils.data.DataLoader(test_data, batch_size=64)

We can load in a model such as DenseNet. The following prints the architecture.

model = models.densenet121(pretrained=True)
model
DenseNet(
  (features): Sequential(
    (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu0): ReLU(inplace=True)
    (pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (denseblock1): _DenseBlock(
      (denselayer1): _DenseLayer(
        (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer2): _DenseLayer(
        (norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(96, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer3): _DenseLayer(
        (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer4): _DenseLayer(
        (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer5): _DenseLayer(
        (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer6): _DenseLayer(
        (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
    )
    (transition1): _Transition(
      (norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock2): _DenseBlock(
      (denselayer1): _DenseLayer(
        (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer2): _DenseLayer(
        (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer3): _DenseLayer(
        (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer4): _DenseLayer(
        (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer5): _DenseLayer(
        (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer6): _DenseLayer(
        (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer7): _DenseLayer(
        (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer8): _DenseLayer(
        (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer9): _DenseLayer(
        (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer10): _DenseLayer(
        (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer11): _DenseLayer(
        (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer12): _DenseLayer(
        (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
    )
    (transition2): _Transition(
      (norm): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock3): _DenseBlock(
      (denselayer1): _DenseLayer(
        (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer2): _DenseLayer(
        (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer3): _DenseLayer(
        (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer4): _DenseLayer(
        (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer5): _DenseLayer(
        (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer6): _DenseLayer(
        (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer7): _DenseLayer(
        (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer8): _DenseLayer(
        (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer9): _DenseLayer(
        (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer10): _DenseLayer(
        (norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer11): _DenseLayer(
        (norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer12): _DenseLayer(
        (norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer13): _DenseLayer(
        (norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer14): _DenseLayer(
        (norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer15): _DenseLayer(
        (norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer16): _DenseLayer(
        (norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer17): _DenseLayer(
        (norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer18): _DenseLayer(
        (norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer19): _DenseLayer(
        (norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer20): _DenseLayer(
        (norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer21): _DenseLayer(
        (norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer22): _DenseLayer(
        (norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer23): _DenseLayer(
        (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer24): _DenseLayer(
        (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
    )
    (transition3): _Transition(
      (norm): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock4): _DenseBlock(
      (denselayer1): _DenseLayer(
        (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer2): _DenseLayer(
        (norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer3): _DenseLayer(
        (norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer4): _DenseLayer(
        (norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer5): _DenseLayer(
        (norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer6): _DenseLayer(
        (norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer7): _DenseLayer(
        (norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer8): _DenseLayer(
        (norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer9): _DenseLayer(
        (norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer10): _DenseLayer(
        (norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer11): _DenseLayer(
        (norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer12): _DenseLayer(
        (norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer13): _DenseLayer(
        (norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer14): _DenseLayer(
        (norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer15): _DenseLayer(
        (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer16): _DenseLayer(
        (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
    )
    (norm5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (classifier): Linear(in_features=1024, out_features=1000, bias=True)
)

This model is built out of two main parts, the features and the classifier:

  • The features part is a stack of convolutional layers and overall works as a feature detector that can be fed into a classifier.
  • The classifier part is a single fully-connected layer (classifier): Linear(in_features=1024, out_features=1000).

This layer was trained on the ImageNet dataset, so it won’t work for our specific problem. That means we need to replace the classifier, but the features will work perfectly on their own. In general, pre-trained networks can be regarded as amazingly good feature detectors that can be used as the input for simple feed-forward classifiers.

# Freeze parameters so we don't backprop through them
for param in model.parameters():
    param.requires_grad = False

from collections import OrderedDict
classifier = nn.Sequential(OrderedDict([
                          ('fc1', nn.Linear(1024, 500)),
                          ('relu', nn.ReLU()),
                          ('fc2', nn.Linear(500, 2)),
                          ('output', nn.LogSoftmax(dim=1))
                          ]))
    
model.classifier = classifier

With our model built, we need to train the classifier. However, now this is a really deep neural network. If you try to train this on a CPU like normal, it will take a long, long time.

Instead, we’re going to use the GPU to do the calculations. The linear algebra computations are done in parallel on the GPU leading to 100x increased training speeds. It’s also possible to train on multiple GPUs, further decreasing training time.

PyTorch, along with pretty much every other deep learning framework, uses CUDA to efficiently compute the forward and backwards passes on the GPU. In PyTorch, you move your model parameters and other tensors to the GPU memory using model.to('cuda'). You can move them back from the GPU with model.to('cpu') which you’ll commonly do when you need to operate on the network output outside of PyTorch.

As a demonstration of the increased speed, I’ll compare how long it takes to perform a forward and backward pass with and without a GPU.

import time

for device in ['cpu', 'cuda']:

    criterion = nn.NLLLoss()
    # Only train the classifier parameters, feature parameters are frozen
    optimizer = optim.Adam(model.classifier.parameters(), lr=0.001)

    model.to(device)

    for ii, (inputs, labels) in enumerate(trainloader):

        # Move input and label tensors to the GPU
        inputs, labels = inputs.to(device), labels.to(device)

        start = time.time()

        outputs = model.forward(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        if ii==3:
            break
        
    print("Device = {};\tTime per batch: {:5.4f} seconds".format(device, (time.time() - start)/3))
Device = cpu;	Time per batch: 0.8427 seconds
Device = cuda;	Time per batch: 0.0057 seconds

You can write device agnostic code which will automatically use CUDA if it’s enabled like so:

# at beginning of the script
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

...

# then whenever you get a new Tensor or Module
# this won't copy if they are already on the desired device
input = data.to(device)
model = MyModule(...).to(device)

Train a pretrained model to classify the cat and dog images

Another pretrained model that would be good is ResNet.

def train_with(device):
    model = models.densenet121(pretrained=True)

    # Freeze parameters so we don't backprop through them
    for param in model.parameters():
        param.requires_grad = False

    model.classifier = nn.Sequential(nn.Linear(1024, 256),
                                     nn.ReLU(),
                                     nn.Dropout(0.2),
                                     nn.Linear(256, 2),
                                     nn.LogSoftmax(dim=1))

    criterion = nn.NLLLoss()

    # Only train the classifier parameters, feature parameters are frozen
    optimizer = optim.Adam(model.classifier.parameters(), lr=0.003)

    model.to(device);
    
    print('Epoch\tStep\tTraining Loss\tTest Loss\tTest Accuracy\tElapsed Time')

    epochs, step, running_loss, print_every = 1, 0, 0, 5

    for e in range(epochs):
        for inputs, labels in trainloader:
            # Capture Start Time
            start = time.time()

            # Model in training mode, dropout is on
            model.train()

            # Move input and label tensors to the default device
            inputs, labels = inputs.to(device), labels.to(device)

            optimizer.zero_grad()

            output = model.forward(inputs)
            loss = criterion(output, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

            if step % print_every == 0:
                test_loss, accuracy = 0, 0

                # Model in inference mode, dropout is off
                model.eval()

                # Turn off gradients for validation, will speed up inference
                with torch.no_grad():
                    for inputs, labels in testloader:
                        inputs, labels = inputs.to(device), labels.to(device)
                        logps = model.forward(inputs)
                        batch_loss = criterion(logps, labels)

                        test_loss += batch_loss.item()

                        # Calculate accuracy
                        ps = torch.exp(logps)
                        top_p, top_class = ps.topk(1, dim=1)
                        equals = top_class == labels.view(*top_class.shape)
                        accuracy += torch.mean(equals.type(torch.FloatTensor)).item()

                        # Calculate Elapsed Time
                        elapsed = time.time() - start

                print("{:3}/{}\t{:4}\t{:13.3f}\t{:9.3f}\t{:13.3f}\t{:12.2f}"
                      .format(e+1, epochs, 
                              step,
                              running_loss/len(trainloader),
                              test_loss/len(testloader),
                              accuracy/len(testloader),
                              elapsed))
                
                running_loss = 0

            if step >= 50 or (device == 'cpu' and step >= 10):
                break
                
            step += 1
train_with('cuda')
Epoch	Step	Training Loss	Test Loss	Test Accuracy	Elapsed Time
  1/1	   0	        0.002	    1.856	        0.488	       13.62
  1/1	   5	        0.014	    0.427	        0.773	       13.61
  1/1	  10	        0.007	    0.254	        0.936	       13.75
  1/1	  15	        0.004	    0.139	        0.971	       13.72
  1/1	  20	        0.003	    0.102	        0.970	       13.82
  1/1	  25	        0.003	    0.074	        0.979	       14.07
  1/1	  30	        0.002	    0.068	        0.977	       14.00
  1/1	  35	        0.003	    0.068	        0.975	       14.04
  1/1	  40	        0.003	    0.060	        0.981	       13.74
  1/1	  45	        0.003	    0.097	        0.964	       13.92
  1/1	  50	        0.003	    0.067	        0.979	       14.07
train_with('cpu')
Epoch	Step	Training Loss	Test Loss	Test Accuracy	Elapsed Time
  1/1	   0	        0.002	    0.334	        0.948	      108.96
  1/1	   5	        0.005	    0.060	        0.982	      104.41
  1/1	  10	        0.003	    0.145	        0.941	      105.75