Perceptron Implementations
Implementing the Perceptron Algorithm Using Numpy
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import numpy as np
np.random.seed(42)
import matplotlib.pyplot as plt
def stepFunction(t):
if t >= 0:
return 1
return 0
def prediction(X, W, b):
return stepFunction((np.matmul(X,W)+b)[0])
def perceptronStep(X, y, W, b, learn_rate = 0.01):
for i in range(len(X)):
y_hat = prediction(X[i],W,b)
if y[i]-y_hat == 1:
W[0] += X[i][0]*learn_rate
W[1] += X[i][1]*learn_rate
b += learn_rate
elif y[i]-y_hat == -1:
W[0] -= X[i][0]*learn_rate
W[1] -= X[i][1]*learn_rate
b -= learn_rate
return W, b
def trainPerceptronAlgorithm(X, y, learn_rate = 0.01, num_epochs = 40):
x_min, x_max = min(X.T[0]), max(X.T[0])
y_min, y_max = min(X.T[1]), max(X.T[1])
W = np.array(np.random.rand(2,1))
b = np.random.rand(1)[0] + x_max
boundary_lines = []
for i in range(num_epochs):
# In each epoch, we apply the perceptron step.
W, b = perceptronStep(X, y, W, b, learn_rate)
boundary_lines.append((-W[0]/W[1], -b/W[1]))
return boundary_lines
data = np.loadtxt('perceptron-implementations/data.csv',
delimiter = ',')
X = data[:,:-1]
y = data[:,-1]
lines = trainPerceptronAlgorithm(X, y)
plt.figure()
X_min = X[:,:1].min()
X_max = X[:,:1].max()
counter = len(lines)
for w, b in lines:
counter -= 1
color = [1 - 0.91 ** counter for _ in range(3)]
plt.plot([X_min-0.5, X_max+0.5],
[(X_min-0.5) * w + b, (X_max+0.5) * w + b],
color=color,
linewidth=0.75)
plt.scatter(X[:50,:1],
X[:50,1:],
c = 'blue',
zorder=3)
plt.scatter(X[50:,:1],
X[50:,1:],
c = 'red',
zorder=3)
plt.gca().set_xlim([-0.5,1.5])
plt.gca().set_ylim([-0.5,1.5]);
This content is taken from notes I took while pursuing the Intro to Machine Learning with Pytorch nanodegree certification.